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Tensor-based Models: A Machine Learning Perspective
Tensors are tricky to deal with:
non-convex problems

Exploit the intrinsic structure of data:
multiple views

Leads to linear models: limited
discriminative power!

Very effective for small sample
problems

One could argue that the most important aspect of intelligence
[...] is the ability to learn from very few examples. [...]
Evolution has probably done a part of the learning but so have
we, when we choose for any given task an appropriate input
representation for our learning machines.

The Mathematics of Learning: Dealing with Data
T. Poggio and S. Smale
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n−mode Unfolding A<n> of a Tensor A

A ∈ RI1 ⊗ RI2 ⊗ RI3 . Unfolding = concatenation of slices

I1

I2I3

A<1> ∈ RI1 ⊗ RI2I3

I2

I1I3

A<2> ∈ RI2 ⊗ RI1I3

I3

I1I2

A<3> ∈ RI3 ⊗ RI1I2
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Multilinear Singular Value Decomposition (MLSVD)

Matrix SVD: A =
∑min{I1,I2}

i=1 σiUiV>i = USV> = S ×1 U ×2 V

Higher Order Extension: the Third Order Case

A = S ×1 U (1) ×2 U (2) ×3 U (3)

I S is the core tensor (same size as A)

I U (1),U (2),U (3) orthogonal matrices
I ≡ SVD’s of the n−mode unfoldings
I notion of multilinear ranks

Truncated MLSVD leads to low multilinear ranks approximation
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A Convex Approach to Tensor-based Data Analysis

Goal
Develop a general approach to tensor-based modeling via convex
optimization

We go through three steps:

1. Sparsity Inducing Penalties: from Vectors to Higher Order Tensors

2. General Convex Formulation

3. Viable Algorithm
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Learning by Penalized Empirical Risk Minimization

Ŵ = arg min
W∈RI

{J (W ) + λr(W )}

I J (W ) measures model fit to the data (depends on the task)
I r(W ) is a penalty function

Sparsity inducing penalty: l1 Norm of W ∈ RI

r(W ) = ‖W ‖1 =
∑I

i=1 |wi |

β
1

β
2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

I Best convex approximation of card(W ) = # {i : wi 6= 0}
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Nuclear Norms: from Matrices to Tensors

r(W ) = ‖W‖1 =
min{I1,I2}∑

i=1
σi = ‖σ‖1, W =

min{I1,I2}∑
i=1

σiUiV>i .

I Best convex approximation of rank(W ) = # {i : σi 6= 0}

Higher Order Generalization of the Nuclear Norm

Matrices Tensors of Order N
→

‖W‖1 =
∑min{I1,I2}

i=1 σi ‖W‖1,1 = 1
N
∑N

n=1 ‖W<n>‖1

‖W‖1,1 penalizes high multi-linear ranks (related to the MLSSVD)
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A class of Optimization Problems Involving Nuclear Norms

min
W∈RI1⊗RI2⊗···⊗RIN

J (W) + λ‖W‖1,1

subject to A(W) = Z

I convex and smooth function J : RI1 ⊗ RI2 ⊗ · · · ⊗ RIN → R
I λ > 0 is a user-defined regularization parameter
I A is a linear transformation

Different choices of J and A give rise to different problems
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Convex MultiLinear Estimation (CMLE) Algorithm
input W(0), dual variables P(0)

(1), . . . ,P
(0)
(N), µ, c

k ← 1
W(k) ←W(0)

P(k)
(n) ← P(0)

(n)
repeat

S ← ∇J (W(k))← gradient of the problem-dependent part
for n ∈ NN do

W (k+1)
(n) ← Dµ

c

(
W(k)
<n> − 1

cS<n> + 1
c P(k)

(n)

)
←

singular values
soft-thresholding
operator

P(k+1)
(n) ← P(k)

(n) + c
(
W(k)
<n> −W (k+1)

(n)

)
end
W(k+1) ← 1

N
∑

n∈NN

(
W (k+1)

(n) − 1
c P(k+1)

(n)

)<n>

until convergence criterion met

Convexity implies global optimality of the solution found!
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Supervised and Unsupervised Learning with CMLE

min
W∈RI1⊗RI2⊗···⊗RIN

J (W) + µ‖W‖1,1

subject to A(W) = Z

Some Cases of Interest

tensor
denoising

: D tensor of noisy measurements
J (W) = ‖W −D‖2

F , A and Z not used

tensor
completion

: J (W) = 0
A : (A(W))j∈Nm = xij

1ij
2···i

j
N
, Z ∈ Rm

classification
/regression

: input-output pairs
{

(X (m), ym) : m ∈ NM
}

J (W) =
∑M

m=1 l
(
ym,

〈
X (m),W

〉)
, l convex loss
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Tensor Completion: Image Examples

Figure: Original images (left column), the given pixels (middle column —
black filled areas denote portion of the images that were removed) and
reconstructed images (right column).



11/19

A Supervised Case: Classification of Aerial Views

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure: First 3 frames of low-resolution grayscale videos (3−way tensors).
The first row ((a)-(d)) depicts input training patterns in the class digging,
the second row ((e)-(h)) input training patterns in the class jumping.
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A Supervised Case: Classification of Aerial Views (cont’d)

AUC performances on test: mean (and standard deviation)
waving (I) vs waving (II) carrying vs running
nuc norm lin LS-SVM nuc norm lin LS-SVM

0.83(0.14) 0.81(0.15) 0.82(0.11) 0.60 (0.16)

pointing vs standing digging vs jumping
nuc norm lin LS-SVM nuc norm lin LS-SVM

0.98(0.02) 0.86(0.07) 1(0) 0.98(0.04)

Table: Area under the ROC curves: the tensor-based approach
(nuc-norm) is compared against LS-SVMlab with linear kernel (lin
LS-SVM).
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Linear Versus Non-parametric Tensor-based Models

So far..
I Nuclear norm penalty to find higher order models with low

multilinear ranks
I Models were still linear in the data:

f (X1 + X2) = 〈W,X1 + X2〉 = vec(W)> (vec(X1) + vec(X2))

Goal
Relax linearity while exploiting the (algebraic) structure of higher
order representations



14/19

A Kernel-based Framework to Tensorial Data Analysis
Kernel Methods

Lead to flexible nonlinear
models

Ever use specialized kernels
or ignore additional structure

What if the number of
examples is very small?
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A Naïve Kernel for Tensors...
Easy to extend the Gaussian-RBF kernel to RI1 ⊗ RI2 ⊗ · · · ⊗ RIN

k(X ,Y) = exp
(
− 1

2σ2 ‖X − Y‖
2
F

)

= exp
(
− 1

2σ2 ‖ vec(X )− vec(Y)‖2
F

)
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Kernel Methods

Lead to flexible nonlinear
models

Ever use specialized kernels
or ignore additional structure

What if the number of
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...Does not Exploit Higher Order Representations!
Easy to extend the Gaussian-RBF kernel to RI1 ⊗ RI2 ⊗ · · · ⊗ RIN

k(X ,Y) = exp
(
− 1

2σ2 ‖X − Y‖
2
F

)
= exp

(
− 1

2σ2 ‖vec(X )− vec(Y)‖2
)
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A Proper Kernel Framework
I optimization approach based on primal-dual formulations
I mapping performed implicitly by a tensorial kernel

Tensorial Kernel based on MLSSVD

Factor kernels kn are based on projected Frobebius norm:

kn(X ,Y) = exp
(
− 1

2σ2

∥∥∥V (n)
X ,1V (n)>

X ,1 −V (n)
Y,1V (n)>

Y,1

∥∥∥2

F

)
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An Illustrative Example: Classification of Sparsity Patterns
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Figure: Classification of sparsity patterns of (noisy) vectors. Vectors in
(a) and (c) belong to the first class whereas (b) and (d) belong to the
second. The solid green (resp. solid blue) dots represent true non-zero
entries (before noise corruption).
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An Illustrative Example: Classification of Sparsity Patterns (cont’d)

By tensor folding turned into the classification of 3−rd order tensors
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Figure: Boxplots of AUC obtained for increasing number of training
patterns for the RBF-Gaussian kernel (a) and for the tensorial kernel (b).
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Libras Dataset

I Libras = Brazilian sign language
I classes formed by 24 recordings of hand movements
I each recording is a bivariate time series (45 time instants) that is

converted into 6× 2× 40 Hankel tensor
I classification by LS-SVM with different kernels

AUC performances on test: mean (and standard deviation)

task tensor kernel RBF kernel lin kernel
class 1 VS 2 0.83(0.06) 0.75(0.12) 0.77(0.13)
class 1 VS 3 0.92(0.04) 0.98(0.04) 0.94(0.09)
class 1 VS 4 1(0) 0.98(0.02) 0.95(0.07)
class 1 VS 5 1(0) 0.97(0.06) 0.91(0.12)
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Concluding Remarks

I Convex multilinear estimation based on nuclear norm penalties
I A viable algorithm that makes use of first order information
I Applications in supervised and unsupervised learning

I Beyond traditional kernel methods: exploiting higher order
representations

Future Research and Open Problems
I Tensor Hunting!
I Classification of Dynamical Systems
I Nuclear Norm in a primal-dual setting?



Thank You for Your Attention!
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